

Advanced LiDAR-UAV Surveying Technology at Patimban Port Development Project

PatimOne Consul

Kazuki ISHII¹, Irwansyah ² Thit O.K.1 ¹ Dong L P ¹

¹Oriental Consultants Global ²Penta Ocean Construction Co

What's LiDAR UAV?

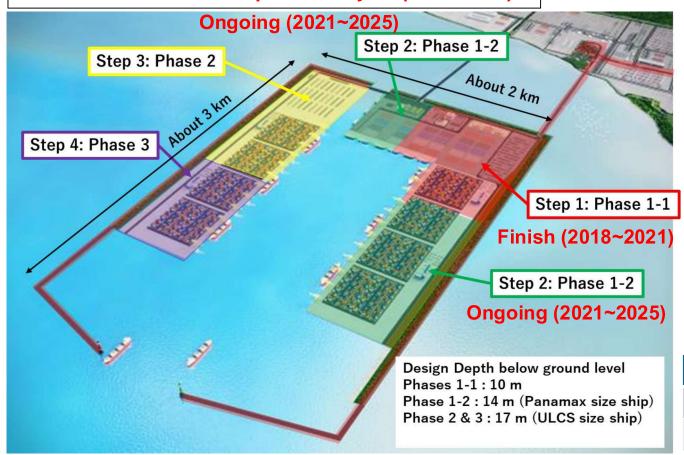
[LIDAR UAV]

Light Detection and Ranging system UAV

- Enable large and distant target area
- Automatic Operation

Existing Case Studies on LiDAR UAV

Examples of Utilization LiDAR UAV in Construction Field


Studies on accuracy

Author	Target	Purposes	Root Mean Square Error
Mandar K et al (2020)	Road SurfaceNon Road Surface	Acquire terrain information	Road Surface: 5.4 cm Non Road Surface: 11.3 cm
Joonghee L et al (2023)	· Reclaimed Land	Evaluate Long term consolidation settlement	Reclaimed Area: 13cm

LiDAR UAV Implementation Target

Patimban Port Development Project (Indonesia)

■ Logistics Plan

☐ Development Plan

Construction Scale	Plan			
Terminal Area	320 ha			
Berth Length	4,000 m			

■ Handling plan

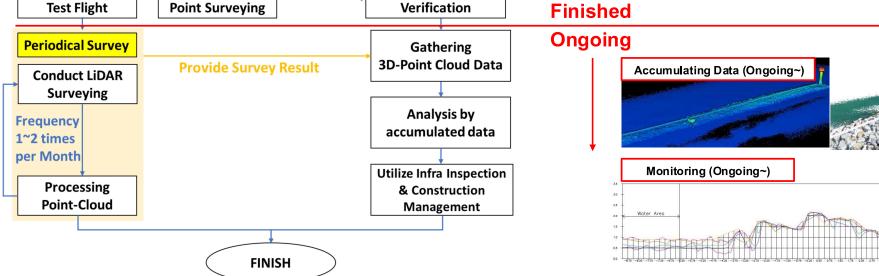
Terminal	Plan			
Container Terminal	7.5 million TEUs			
Car Terminal	0.6 million CBUs			

Implementation Target and View

Study Scopes

Implementation Equipment

■ Specs and Features


MATRICE 300 RTK	ZENMUSE L1	D-RTK2
• 55min Max Flight Time	• Point Rate /Single return: max. 240,000 pts/s	• Positioning System / RTK
 7m/s Max Descend Speed 	/Multiple return: max. 480,000 pts/s	 Accuracy
· 7000m Service Ceiling	 System Accuracy / Horizontal: 10 cm @ 50 m 	Horizontal / 1 cm+ 1 ppm
 15m/s Wind Resistance 	/ Vertical: 5 cm @ 50 m	Vertical / 2 cm+ 1 ppm (RMS)
· 23m/s Max Speed	· RGB Camera Resolution / 20MP	

Study Scopes

Study Flow Chart and Progress

Implementation Plan Flow Chart **LiDAR Implementation Study Progress** Field Investigation (December 2023) **LiDAR-UAV Total Station Implementation** Surveying Surveying **Process** Accuracy Study (March 2024) **Feasibility Assessment Safety Flight** Phase-1 **Test Flight** of Processing Data **Assessment** Phase-2 **Conduct Control LiDAR Accuracy**

General Methods for Accuracy Test

[Accuracy Verification Test of LiDAR Survey]

Target Survey Area South Seawall in Patimban Port (Figure→)

Target accuracy <u>within 10 cm error</u> for both horizontal & vertical

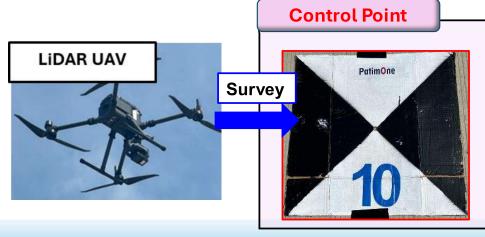
(Referring to Public Surveying – working rules and regulations of Japan ,MLIT ,2023)

[General Methods]

- **1** Control points: 10 Control Points were installed on 50m interval
- **2**Comparison between LiDAR surveying and Total Stations Surveying.
- ③Verified the accuracy of LiDAR surveying by comparing the horizontal & vertical error.

LiDAR Surveying and Control Points

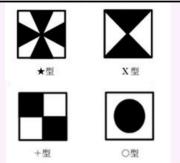
To find Optimum flight condition, Verification was carried out in two altitudes (50m and 80m).


Flight Condition

	Option 1	Option 2
Flying Height (m)	50	80
Flying Speed (m/s)	2.5	2.5
Overlap Ratio(%)	80	80

*Flight Speed and Overlap Ratio was decided by trial flight and existing case study

☐ Flight Route


[Features]

Number : 10 pieces Size : 62cm × 62cm

Design: Referring to the Standards of "Geospatial

Information Authority of Japan"

【Reference】 Safety Standards for the Use of UAVs in Public Surveying (GIAJ)

TS Surveying and Coordinates Transformation

■ Method : Single-Point Surveying

■ Coordinates Transformation

LiDAR Surveying : GNSS Coordinates

Total Station Surveying : Localized Coordinates

⇒Need For Unification

Convert Horizontal Coordinates : Localized ⇒ GNSS

$$\begin{bmatrix} x_G \\ y_G \end{bmatrix} = s \begin{bmatrix} (x_L - x_{PP0}) \\ (y_L - y_{PP0}) \end{bmatrix} + \begin{bmatrix} x_{PP0} \\ y_{PP0} \end{bmatrix}$$

GNSS Coordinate: (x_G, y_G) , Localized Coordinate: (x_L, y_L) , PP. 00 Coordinate: (x_{PP0}, y_{PP0}) s: scale factor (= 1.00088)

	PP.00					
	UTM (48S) ZONE					
Easting=X(m)	Northing=Y(m)	Z(m)				
821420.669	9308882.035	2.185				

LiDAR UAV vs TS Study Result

[Accuracy Assessment : RMSE (Root Mean Square Error)]

$$RMSE(x, y, z) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \{ (x_{t(i)}, y_{t(i)}, z_{t(i)}) - (x_{l(i)}, y_{l(i)}, z_{l(i)}) \}^{2}}$$

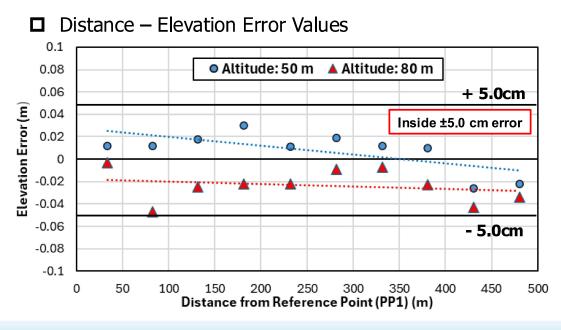
 $Total \ Station \ Survey: \left(x_{t(i)}, y_{t(i)}, z_{t(i)}\right) \ LiDAR \ Survey: \left(x_{l(i)}, y_{l(i)}, z_{l(i)}\right)$

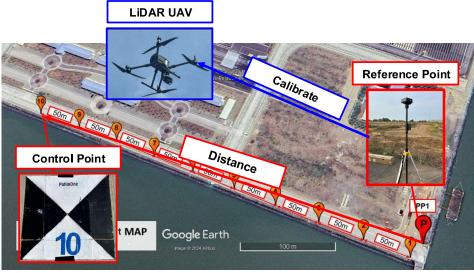
[Assessment Result]

- Target errors (mean error and RMSE within 10 cm) achieved in both horizontal and vertical directions.
- In particular, the vertical accuracy, RMSE are being around 1 ~ 3cm.
- · Altitude 50 m is optimal for construction site scale surveys when higher accuracy is required.
 - ☐ TS vs LiDAR UAV (50m)

	ERROR = Total Station - LiDAR						
Point ERROR X (m)		ERROR	ERROR Y (m)		ERROR Z (m)		
P1	0.021	0.021 0.062		0.012			
P2	0.043	0.0	0.024		0.012		
P3	-0.027	0.027 0.041		0.018			
P4	-0.038	-0.0	09	0.030			
P5	-0.087	0.004			0.011		
P6	P6 -0.059		0.045		0.019		
P7	P7 -0.034		-0.034 0.013			0.012	
P8	-0.019	-0.019 0.011 -0.064 0.041		0.010 -0.026			
P9	-0.064						
P10 -0.053		0.0	85	-0.022			
		Х	Υ		Z		
Mean Error (m)		0.044	0.034		0.017		
Root Mean Square Error (m)		0.049	0.042		0.018		

	ERROR = Total Station - LiDAR					
Point	Point ERROR X (m)		ERROR Y (m)		ERROR Z (m)	
P1	-0.060	0.0	59		-0.003	
P2	0.057	0.0	34		-0.047	
Р3	-0.012	0.0	61		-0.025	
P4	-0.069	0.0	0.065		-0.022	
P5	-0.048	0.0	0.051		-0.022	
P6	0.046	0.060		-0.009		
P7	-0.036	-0.036 0.079 0.005 0.096		-0.007		
P8	0.005				-0.023	
P9	0.046	0.046 0.077			-0.043	
P10	P10 -0.022		-0.011		-0.034	
		Х	Υ		Z	
Me	an Error (m)	0.040	0.059		0.023	
Root Mean Square Error (m)		0.045	0.063		0.027	


Verification of Accuracy in remote area


[Relation between distance from reference point and error value]

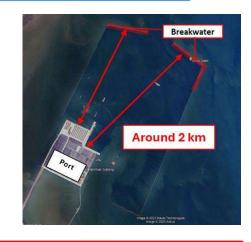
The elevation (z) errors for all points are within 5 cm absolute value, regardless of the distance.

Vertical accuracy is maintained even when surveying at remote locations.

⇒LiDAR UAV is validated for remote surveying of offshore structures

Implementation on the Port

1 Breakwater Settlement Monitoring (1)


■ Breakwater Features

Terms after construction Breakwater: 2.5 Years (From November 2021)

The breakwater Location: approximately 2 km offshore from land.

Excessive settlement is observed at several locations, demand regular monitoring for maintenance purpose

- Current Monitoring Method
- Field Inspection (1 time/ month) : Recording Damage & Settlement
- · Carrying out Repair works based on Field Inspection Result

Problem Found in Field Investigation

Implementation on the Port

1 Breakwater Settlement Monitoring (2)

☐ Utilization for Breakwater Repairing Work

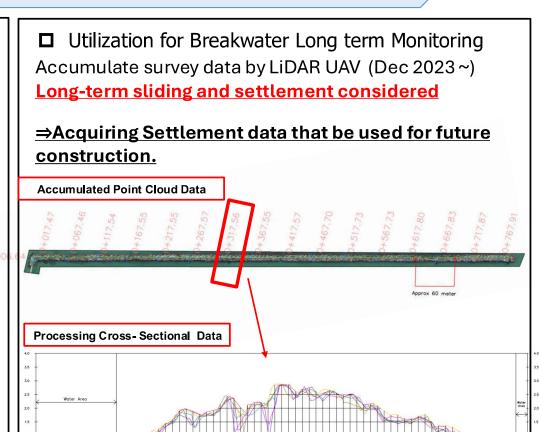
Conduct Periodic surveying by LiDAR UAV

Contributing to save time in Inspection

[Previous]

 $0.5\sim2$ day / 1 time

(After LiDAR introduction)
25 minutes / 1 time

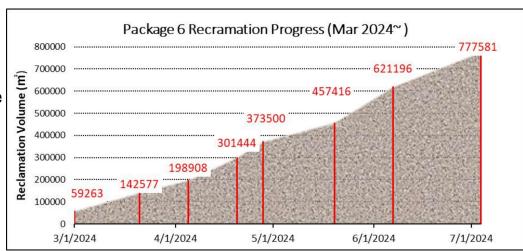


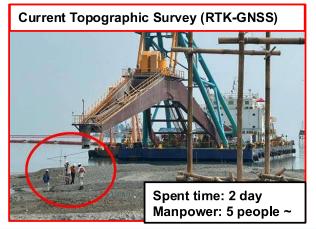
[By LiDAR UAV Data]

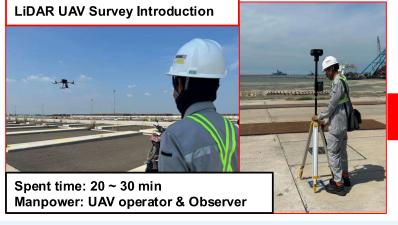
- Measuring the Settlement
 Range and Elevation Change
- 2 Estimating the Number of blocks required.
- ⇒Improvement Efficiency of Repairing Work

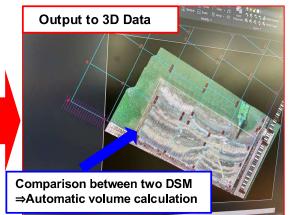
— : Apr 2024 —— : May2024

Implementation on the Port


2 Reclamation Work Monitoring


Utilization for Reclamation Work Monitoring

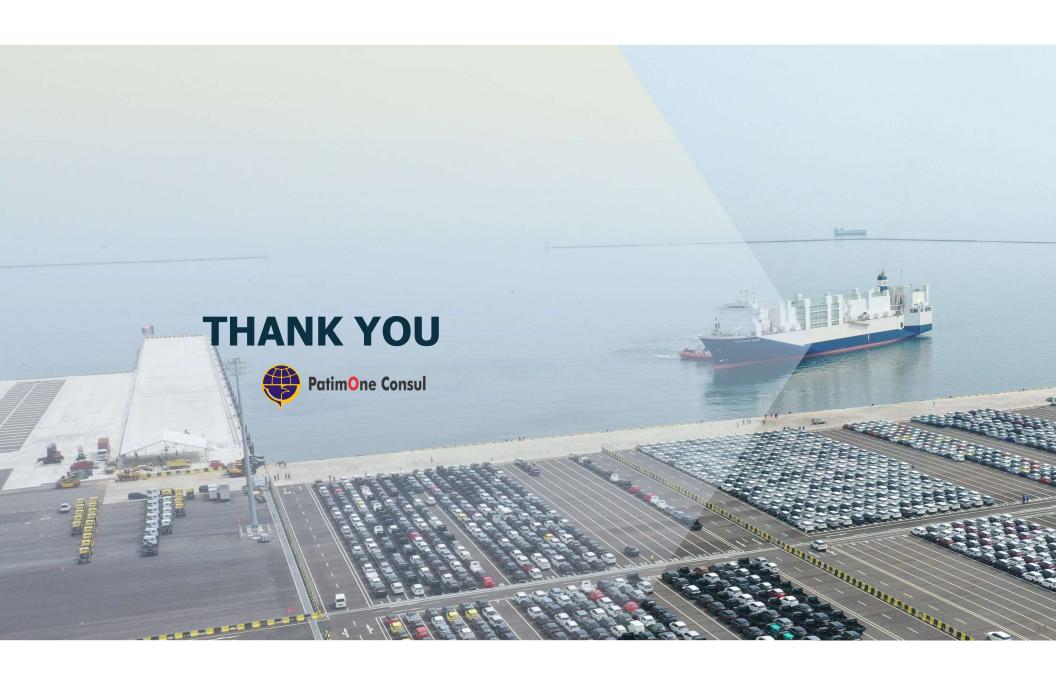

Application of LiDAR UAV for monitoring the progress of reclamation works.


Expected to improve operational efficiency and obtain the data needed for analysis.

- □ Pilot Implementation Case Study
- Volume calculations of reclaimed soil (Ongoing)
- Observation of reclaimed area settlement (Ongoing)

Summary and Next Purpose

[Study Summary]


- ✓ A Preliminary Implementation flowchart was planned and Accuracy check was conducted before the actual monitoring of port construction management.
- ✓ According to our Accuracy Check Result, Target errors (mean error and RMSE within 10 cm) achieved in both horizontal and vertical directions by 50m and 80m Altitude. And It was suggested that accuracy was maintained in remote surveying areas.
- ✓ We are now conducting pilot implementation study at Break water and Reclamation area monitoring. And each showed usefulness like time savings and application to analysis.

Next Purpose

- ✓ Continue current implementation study following the monitoring schedules and validate the effectiveness of LiDAR UAV in Port Construction Management.
- ✓ Conduct Detailed Analysis of settlement observations of Marine construction by accumulated 3D Point Cloud data.

LiDAR Survey proves to be a reliable and timesaving alternative for Survey Works!

